
P1: GXB

International Journal of Theoretical Physics [ijtp] pp1044-ijtp-475684 November 12, 2003 1:37 Style file version May 30th, 2002

International Journal of Theoretical Physics, Vol. 42, No. 12, December 2003 (C© 2003)

Metaplectic Representation of ospq(1/2) Algebra
and Basic Hypergeometric Functions
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In this paper we use the bosonic realization of ospq(1/2) algebra to obtain its metaplectic
representation. The group element for this algebra is shown to be described in terms of
the basic hypergeometric function.
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1. INTRODUCTION

Quantum groups or q-deformation of Lie algebra implies some specific de-
formation of classical Lie algebra and arise in many branches of physics and
mathematics (Drinfeld, 1986; Faddeevet al., 1988; Jimbo, 1985; Manin, 1988;
Woronowics, 1987). From a mathematical point of view, it is a noncommutative
associative quasi-triangular Hopf algebra. They offer the possibility of a group
theoretical interpretation of the so-called basic hypergeometric series, quite in
analogy with the Lie group interpretation of ordinary special functions (Miller,
1968; Vilenkin, 1968). Indeed, various calsses of q-orthonormal polynomials have
already been identified in the representation theory of quantum groups (Masuda
et al., 1988, 1990; Vaskman and Soibelman, 1988). This group-theoretical setting
enables us to find new properties of the q-special function. Recently, Floreanini
and Vinet (1992a,b) discussed the connection of the metaplectic representation
of the real form suq(1, 1) with a q-generalization of the Gegenbauer polynomi-
als. In this paper we apply their method to the q-deformed-graded Lie algebra
(ospq(1/2)) and discuss the metaplectic representation of ospq(1/2) algebra. And
we will show that the matrix elements of the certain operators of ospq(1/2) alge-
bra are described in terms of the basic hypergeometric functions generalizing the
Gegenbauer polynomial.
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2. THE METAPLECTIC REPRESENTATION OF OSP q(1/2) ALGEBRA

We recall first that the ospq(1/2) has three even (bosonic) generatorsH, J±
generating a suq(2) subalgebra, and two odd (fermionic) generatorsv±, with
(anti)commutation relations (Saleur, 1990)

[H, v±] = ±1

2
v±, {v+, v−} = −1

4
[2H ], (1)

where [x] is defined as

[x] = qx − q−x

q − q−1
.

From the relation

J± = ±4(v±)2, (2)

the remaining (anti)commutation relations are easily obtained. An algebra homo-
morphism (coproduct)1 : ospq(1/2)→ f ospq(1/2)⊗ ospq(1/2) reads

1(v±) = qH ⊗ v± + v± ⊗ q−H , 1(H ) = id ⊗ H + H ⊗ id. (3)

Similarly counitε and antipodSare defined as

ε(H ) = ε(v±) = 0, S(v±) = −q∓1/2v±, S(qH ) = q−H . (4)

One can easily check that the algebra (1) is endowed with a Hopf structure. In
order to realize the ospq(1/2) algebra, we introduce the following q-boson algebra:

aa+ − qa+a = 1, [N, a+] = a+, [N, a] = −a. (5)

This algebra is realized in terms of the q-difference operator as follows:

N = z∂z, a = 1

1− q
D, a+ = z, (6)

where

D = 1

z
(1− T).

The operatorT is called scaling operator satisfyingTf (z) = f (qz).
Then the bosonic realization of ospq(1/2) algebra is given by

v+ = 1

2
√

[2]q1/2

a+

v− = − 1

2
√

[2]q1/2

a

H = 1

2
(N + 1/2). (7)



P1: GXB

International Journal of Theoretical Physics [ijtp] pp1044-ijtp-475684 November 12, 2003 1:37 Style file version May 30th, 2002

Metaplectic Representation of ospq(1/2) Algebra 2943

Using the difference operator realization of q-boson algebra we can obtain the
difference operator realization of ospq(1/2) algebra as follows:

v+ = 1

2
√

[2]q1/2

z

v− = − 1

2
√

[2]q1/2

1

1− q
D

H = 1

2
(z∂z+ 1/2). (8)

In the limit q→ 1 this representation reduces to the metaplectic representation of
osp(1/2) algebra.

3. GROUP ELEMENTS AND BASIC HYPERGEOMETRIC FUNCTION

The connection of the realization (8) with q-polynomials arises by considering
the matrix elements of certain operators of the ospq(1/2) algebra. In analogy with
the ordinary osp(1/2) algebra let us introduce the elements

U (α, β, γ ) = Eq1/2(2α(1− q1/2)
√

[2]q1/2v+)

× Eq1/2(−2β(1− q1/2)
√

[2]q1/2v−)

× Eq1/2(2γ (1− q1/2)H ), (9)

where the q-exponential function is defined as

Eq1/2(z) =
∞∑

n=0

qn(n−1)/4

(q1/2; q1/2)n
zn (10)

and the q-shifted factorial is defined as

(a; q)n = (1− a)(1− qa) · · · (1− aqn−1), n = 1, 2,. . .

(a; q)0 = 1. (11)

Using the Eq. (8) we have

U (α, β, γ ) = Eq1/2(α(1− q1/2)z)

× Eq1/2(β(1+ q1/2)−1D)

× Eq1/2(γ (1− q1/2)(z∂z+ 1/2)). (12)

We define the matrix elementsUkn(α, β, γ ) through

U (α, β, γ )zn =
∞∑

k=0

Ukn(α, β, γ )zk. (13)
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Now we shall show that the matrix elementsUkn(α, β, γ ) can be expressed in
terms of the q-generalization of Gegenbauer polynomials. If we act the third part
of Eq. (12) on the statezn, we obtain

Eq1/2(γ (1− q1/2)(z∂z+ 1/2))zn

= Eq1/2(γ (1− q1/2)(n+ 1/2))zn. (14)

From the definition of the q-exponential one shows that

Eq1/2(β(1+ q1/2)−1D+)zn

=
∑n

m=0 qm(m−1)/4(1+ q1/2)−m(q; q)nβ
m

(q1/2; q1/2)n−mzn−m.
(15)

One thus obtains

Eq1/2(α(1− q1/2)z)Eq1/2(β(1+ q1/2)−1D+)zn

=
∞∑

k=0

q
1
4 (n−k)(n−k−1)(1+ q1/2)k−nβk−nzk

×
[

k∑
k=0

q
1
2 (l+n−k−1)(q; q)n

(q1/2; q1/2)l (q1/2; q1/2)n+l−k(q; q)k−l

(
1− q1/2

1+ q1/2
αβ

)l
]
. (16)

With the help of the identity

(a; q)n−l = (q; q)n

(q1−n/a; q)l
(−q/q)l ql (l−1)/2−nl

and

(q; q)l = (q1/2; q1/2)l (−q1/2; q1/2)l

and reverting the direction of the inner summation, the term in the square bracket
in Eq. (16) can be shown to be proportional to a basic hypergeometric function,
defined by the series

2φ1(a, b; c, d; q1/2, x) =
∞∑

n=0

(a; q1/2)n(b; q1/2)n

(c; q1/2)n(d; q1/2)n
zn. (17)

Explicit computation yields

Ukn(α, β, γ ) = Eq1/2(γ (1− q1/2)(n+ 1/2))q
1
4 (n2−n+k2−k)

× [(−q1/2; q1/2)n/(q
1/2; q1/2)k]αkβn(1− q1/2)k(1+ q1/2)−n

× 2φ1

(
q−n/2, q−k/2; q1/2,−q1/2; q1/2,

1+ q1/2

1− q1/2
(αβ)−1

)
. (18)
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4. CONCLUSION

In this paper we use the bosonic realization of ospq(1/2) algebra to obtain its
metaplectic representation. Moreover the group element for this algebra is shown
to be described in terms of the basic hypergeometric function. Of course we can
obtain the fermionic realization of the ospq(1/2) algebra, which is given by

v+ = 1

2
a+[2h− N − 1/2]+ f + 1

2
f +[2h− N], (19)

v− = 1

2
[N + 1/2]+ f + 1

2
f +a (20)

H = N + 1

2
f + f − h (21)

where

aa+ − qa+a = q−N , [N, a+] = a+, [N, a] = −a (22)

and

f, f + = 1, f 2 = ( f +)2 = 0. (23)

However this realization looks too complicated, so we adopt the bosonic realiza-
tion of the q-deformed-ospq(1/2) algebrea. I think that it is very interesting to find
the metaplectic representation for the fermionic realization and to derive the con-
nection with some types of q-deformed polynomials. I hope that this work and its
related topics will become clear in the near future.
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